Bounds on the spectral sparsification of symmetric and off-diagonal nonnegative real matrices

نویسندگان

چکیده

We say that a square real matrix $M$ is \emph{off-diagonal nonnegative} if and only all entries outside its diagonal are nonnegative numbers. In this note we show for any off-diagonal symmetric $M$, there exists $\widehat{M}$ which sparse close in spectrum to $M$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Levinger’s function of nonnegative almost skew-symmetric matrices

The analysis of the Perron eigenspace of a nonnegative matrix A whose symmetric part has rank one is continued. Improved bounds for the Perron root of Levinger’s transformation (1 − α)A+ αAt (α ∈ [0, 1]) and its derivative are obtained. The relative geometry of the corresponding left and right Perron vectors is examined. The results are applied to tournament matrices to obtain a comparison resu...

متن کامل

Bounds on the Extreme Eigenvalues of Real Symmetric Toeplitz Matrices

We derive upper and lower bounds on the smallest and largest eigenvalues, respectively, of real symmetric Toeplitz matrices. The bounds are rst obtained for positive-deenite matrices and then extended to the general real symmetric case. Our bounds are computed as the roots of rational and polynomial approximations to spectral, or secular, equations. The decomposition of the spectrum into even a...

متن کامل

On the spectral radius of nonnegative matrices

We give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.

متن کامل

Bounds on determinants of perturbed diagonal matrices

We give upper and lower bounds on the determinant of a perturbation of the identity matrix or, more generally, a perturbation of a nonsingular diagonal matrix. The matrices considered are, in general, diagonally dominant. The lower bounds are best possible, and in several cases they are stronger than well-known bounds due to Ostrowski and other authors. If A = I−E is a real n×n matrix and the e...

متن کامل

Minimization of Norms and the Spectral Radius of a Sum of Nonnegative Matrices Under Diagonal Equivalence

We generalize in various directions a result of Friedland and Karlin on a lower bound for the spectral radius of a matrix that is positively diagonally equivalent to a • The research of these authors was supported by their joint grant No. 90-00434 from the United States-Israel Binational Science Foundation, Jerusalem, Israel. t The research of this author was supported in part by NSF Grant DMS-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics, Algorithms and Applications

سال: 2021

ISSN: ['1793-8309', '1793-8317']

DOI: https://doi.org/10.1142/s1793830921501093